
MACHINE LEARNING II, LECTURE NOTES

José Manuel de Frutos Porras
Universidad Carlos III de Madrid

jofrutos@ing.uc3m.es

1 Probabilistic models for discrete data

Check [1, Sections 2.3.1, 2.3.2, 2.4.5, 2.5.4, 3.1-3.4], [2, Sections 2.1,2.2, 2.4]

1.1 Likelihood and Prior

In Bayesian inference, the likelihood and prior are two fundamental components used to update our beliefs about a
hypothesis h given observed data D. From this point onward, we will assume that our data are independently and
identically distributed (i.i.d.).

Likelihood

The likelihood, p(D|h), represents the probability of observing the data D given that a particular hypothesis h is true.
It is derived from the generative process that produces the data under the assumption of the hypothesis. Formally, if
D = {x1, x2, . . . , xN} are the observed data points, and θ represents the parameters of the hypothesis h, then the
likelihood function can be expressed as:

p(D|θ) =
N∏
i=1

p(xi|θ)

Prior

The prior, p(h), reflects our initial belief about the probability of the hypothesis h before observing any data. It encodes
any pre-existing knowledge or assumptions we might have about the hypothesis. The prior can be informed by domain
knowledge, previous experiments, or subjective judgment.

The prior plays a crucial role in the Bayesian framework, especially in cases where data is sparse. It helps in regularizing
the inference process, preventing the model from overfitting to the observed data.

Bayes’ theorem

Bayes’ theorem combines the prior and the likelihood to update our belief about the hypothesis after observing the data.
The result is the posterior distribution, which represents the updated belief:

p(h|D) =
p(D|h)p(h)

p(D)

In this equation, p(D) is the marginal likelihood, also known as evidence, which ensures that the posterior distribution
is properly normalized. Since p(D) is constant, it can be disregarded in maximization/minimization scenarios, such as
when computing the Maximum A Posteriori (MAP) estimate, where we use:

p(h|D) ∝ p(D|h)p(h)

Machine Learning II, lecture notes.

Maximum a posteriori (MAP) estimation

The MAP estimate is the value of the parameter θ that maximizes the posterior distribution p(θ|D). It is given by:

θMAP = argmax
θ

p(θ|D) = argmax
θ

[p(D|θ)p(θ)]

The MAP estimate incorporates both the prior information and the likelihood of the observed data. It is particularly
useful when we have prior knowledge about the parameter θ.

Maximum likelihood (ML) estimation

The ML estimate is the value of the parameter θ that maximizes the likelihood function p(D|θ). It is given by:

θML = argmax
θ

p(D|θ)

The ML estimate does not consider the prior distribution and relies solely on the observed data. It is a common approach
when no prior information is available or when we want to estimate the parameter based purely on the data.

Note that the MAP estimate can be written as

ĥMAP = argmax
h

p(D|h)p(h) = argmax
h

[log p(D|h) + log p(h)]

In other words, if we have enough data, we see that the data overwhelms the prior. In this case, the MAP estimate
converges towards the MLE.

Posterior Predictive Distribution

The posterior predictive distribution is used to make predictions about future data points based on the posterior
distribution of the hypothesis. It represents our updated belief about what data we are likely to observe after having
seen the initial dataset D.
Definition. Given a new data point x̃, the posterior predictive distribution is given by:

p(x̃|D) =

∫
p(x̃|θ)p(θ|D)dθ

Here, p(x̃|θ) is the likelihood of the new data point given the parameter θ, and p(θ|D) is the posterior distribution over
the parameters θ after observing the data D. This integral averages the predictions for x̃ over all possible hypotheses
weighted by their posterior probabilities.

Sufficient statistic

In statistical inference, a sufficient statistic is a function of the data that provides as much information about the
parameter of interest as the entire dataset itself. Formally, consider a random sample X1, X2, . . . , Xn drawn from a
probability distribution that depends on a parameter θ. Let the joint probability density function (pdf) be denoted by
p(X1, X2, . . . , Xn|θ).
A statistic S(X1, X2, . . . , Xn) = S(X) is said to be a sufficient statistic for the parameter θ if the conditional
distribution of the sample X given the statistic S(X) does not depend on θ. Mathematically, S(X) is sufficient for θ if:

p(X|θ, T (X)) = p(X|S(X))

This condition implies that once the value of the sufficient statistic T (X) is known, the sample X provides no additional
information about the parameter θ.

The Neyman-Fisher factorization theorem provides a practical method to check whether a statistic is sufficient. See
[3, Theorem 2.2].

1.2 Binary data - The Beta-Binomial Model

The Beta-Binomial model is a fundamental concept in Bayesian statistics, especially useful for modeling binary
outcomes, such as coin flips, where the underlying probability of success (e.g., the probability of getting heads) is
unknown.

2

Machine Learning II, lecture notes.

Likelihood

Consider a scenario where we have a series of N Bernoulli trials (e.g., coin flips), and we want to infer the probability θ
of success (e.g., getting heads). Let Xi ∼ Ber(θ) be the outcome of each trial, where Xi = 1 represents a success and
Xi = 0 represents a failure.

Given a dataset D = {X1, X2, . . . , XN}, where N1 is the number of successes and N0 is the number of failures, the
likelihood function is given by:

p(D|θ) = θN1(1− θ)N0

Alternatively, if we consider the data as the count of successes in N trials, then N1 ∼ Bin(N, θ), and the likelihood is:

p(D|θ) =
(
N

N1

)
θN1(1− θ)N0

Since the binomial coefficient is a constant independent of θ. Therefore, any inferences we make about θ will be the
same whether we observe the counts, D = (N1, N), or a sequence of trials, D = {x1, . . . , xN}.

Prior

When the prior and the posterior have the same form, we say that the prior is a conjugate prior for the corresponding
likelihood. Conjugate priors are widely used because they simplify computation, and are easy to interpret,

The conjugate prior for the Bernoulli likelihood is the Beta distribution, defined as:
θ ∼ Beta(a, b)

where a and b are the hyperparameters of the prior, representing our prior beliefs about the number of successes and
failures, respectively. The Beta distribution is given by:

Beta(θ|a, b) ∝ θa−1(1− θ)b−1

Posterior

After observing the data D, we update our belief about θ using Bayes’ theorem, which combines the likelihood and the
prior to obtain the posterior distribution:

p(θ|D) ∝ p(D|θ)p(θ)
For the Beta-Binomial model, the posterior distribution is also a Beta distribution, given by:

θ|D ∼ Beta(a+N1, b+N0)

Here, the posterior is simply the Beta distribution with updated parameters:
apost = a+N1, bpost = b+N0

Posterior Mean and Mode

The posterior mean, which is often used as a point estimate for θ, is given by:

E[θ|D] =
a+N1

a+ b+N
The posterior mode (MAP estimate) is:

θMAP =
a+N1 − 1

a+ b+N − 2
When using a uniform prior (i.e., a = 1, b = 1), the MAP estimate reduces to the maximum likelihood estimate (MLE):

θMLE =
N1

N

Posterior Predictive Distribution

The posterior predictive distribution is used to make predictions about future observations based on the current posterior.
For a future Bernoulli trial, the probability of success is given by:

p(X̃ = 1|D) = E[θ|D] =
a+N1

a+ b+N
This can be generalized to predict the number of successes x in M future trials, which follows a Beta-Binomial
distribution:

p(x|D,M) =

(
M

x

)
B(x+ apost,M − x+ bpost)

B(apost, bpost)

where B(·, ·) is the Beta function.

3

Machine Learning II, lecture notes.

1.3 Dirichlet distribution

The Dirichlet distribution is a family of continuous multivariate probability distributions parameterized by a vector of
positive reals. It is the conjugate prior of the categorical and multinomial distributions, making it particularly useful in
Bayesian inference for discrete probability distributions.

Definition

The Dirichlet distribution is defined over a probability simplex, which means it is a distribution over K-dimensional
vectors θ = (θ1, θ2, . . . , θK), where each θi ≥ 0 and

∑K
i=1 θi = 1. The probability density function (pdf) of the

Dirichlet distribution is given by:

Dir(θ|α) =
1

B(α)

K∏
i=1

θαi−1
i

where α = (α1, α2, . . . , αK) is a vector of positive concentration parameters, and B(α) is the multivariate Beta
function, defined as:

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
Here, Γ(·) denotes the Gamma function.

Interpretation of parameters

Each αi parameter can be interpreted as a prior count associated with the outcome i. The larger the value of αi, the
more the distribution is skewed towards θi being larger. When all αi = 1, the Dirichlet distribution is uniform over the
simplex. When αi > 1, the distribution is biased towards the corresponding component θi. When 0 < αi < 1, the
distribution favors sparsity, meaning that θi is more likely to be close to zero.

The sum of the parameters, α0 =
∑K

i=1 αi, is referred to as the concentration parameter. A larger α0 indicates a
stronger belief in the prior distribution.

1.4 Categorical data

We generalize the previous results to infer the probability that a dice with K sides comes up as face k.

Likelihood

Suppose we observe N dice rolls, D = {x1, . . . , xN}, where xi ∈ {1, . . . ,K}. If we assume the data is independent
and identically distributed (iid), the likelihood has the form

p(D|θ) =
K∏

k=1

θNk

k ,

where Nk =
∑N

i=1 I(xi = k) is the number of times event k occurred (these are the sufficient statistics for this
model). The likelihood function p(D|θ) represents the probability of observing the data D given the parameter vector
θ = (θ1, θ2, . . . , θK), where θk is the probability of observing outcome k in a single dice roll, so

∑K
i=1 θi = 1.

Prior

Since the parameter vector lives in the K-dimensional probability simplex (i.e.
∑K

i=1 θi = 1), we need a prior that
has support over this simplex. Ideally, it would also be conjugate. Fortunately, the Dirichlet distribution satisfies both
criteria. So we will use the following prior:

Dir(θ|α) =
1

B(α)

K∏
k=1

θαk−1
k I(x ∈ SK)

where α = (α1, . . . , αK) is the vector of concentration parameters, B(α) is the multivariate Beta function, and SK

represents the K-dimensional probability simplex.

4

Machine Learning II, lecture notes.

Posterior

Multiplying the likelihood by the prior, we find that the posterior is also Dirichlet:

p(θ|D) ∝ p(D|θ)p(θ)

∝
K∏

k=1

θNk

k

K∏
k=1

θαk−1
k

=

K∏
k=1

θαk+Nk−1
k

= Dir(θ|α1 +N1, . . . , αK +NK)

Thus, the posterior distribution is also a Dirichlet distribution with updated parameters αk +Nk for each k.

Properties

• Maximum A Posteriori (MAP):

θ̂MAP
k =

Nk + αk − 1

N + α0 −K
(1)

• Maximum Likelihood (ML):

θ̂ML = argmax
θ

p(D|θ) = Nk

N
(2)

• The posterior predictive that gives the probability of song x from genre k in a new top list is:

p(x = k|D) =
Nk + αk

N + α0

Proof.

We use Lagrange multiplier with the added condition that
∑

k θk = 1. See [1, Section 3.2.1]

2 Probabilistic models for continuous Data

[1, Sections 4.3, 4.4, 4.5]

2.1 Gaussian pdf

The probability density function (pdf) for a multivariate Gaussian (MVN) in D dimensions is defined as:

N(x|µ,Σ) = 1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ is the mean vector, and Σ is the covariance matrix. The term inside the exponent is known as the Mahalanobis
distance, which measures the distance of a data point x from the mean vector µ, scaled by the covariance structure.

To interpret the Mahalanobis distance, we can decompose Σ as Σ = UΛUT , where U contains the eigenvectors and Λ
is a diagonal matrix of eigenvalues. This allows us to express the inverse covariance as:

Σ−1 = UΛ−1UT =

D∑
i=1

1

λi
uiu

T
i

where ui and λi are the eigenvectors and eigenvalues of Σ. Thus, the Mahalanobis distance can be written as a weighted
sum of squared projections:

(x− µ)TΣ−1(x− µ) =

D∑
i=1

y2i
λi

5

Machine Learning II, lecture notes.

where yi = uTi (x− µ). In two dimensions, this forms the equation of an ellipse:

y21
λ1

+
y22
λ2

= 1

In the MVN, the eigenvectors define the orientation of these elliptical contours, and the eigenvalues determine their
elongation. The Mahalanobis distance thus represents Euclidean distance in a transformed space, centered by µ and
rotated by U , aligned with the main directions of data variance.

2.2 Jointly Gaussian Distributions

Inference in jointly Gaussian distributions involves computing the marginals and conditionals from a joint Gaussian
distribution, p(x1, x2).
Theorem (Marginals and Conditionals of an MVN). Suppose x = (x1, x2) is jointly Gaussian with parameters:

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
Then the marginals are given by:

{
p(x1) = N(x1|µ1,Σ11),

p(x2) = N(x2|µ2,Σ22).

and the posterior conditional is given by:

p(x1|x2) = N(x1|µ1|2,Σ1|2)

where

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) = µ1 − Λ−1

11 Λ12(x2 − µ2) = Σ1|2(Λ11µ1 − Λ12(x2 − µ2))

and

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 = Λ−1

11

Proof. The proof relies on algebraic manipulations and parameter recognition. See [2, Section 2.3.2].

Both the marginal and conditional distributions are Gaussian. For the marginals, we simply extract the rows and
columns associated with x1 or x2. For the conditional distribution, additional steps are required: the conditional mean
is a linear function of x2, while the conditional covariance is a constant matrix, independent of x2. We provide three
equivalent expressions for the posterior mean and two for the posterior covariance, each suited to different applications.

2.3 Linear Gaussian systems

Suppose we have two variables, x and y, where x ∈ RDx is a hidden variable and y ∈ RDy is a noisy observation of x.
The prior and likelihood are defined as:

p(x) = N(x|µx,Σx), p(y|x) = N(y|Ax+ b,Σy) (3)
where A is a Dy ×Dx matrix. This setup represents a linear Gaussian system, schematically shown as x→ y, meaning
x generates y. We will show how to infer x from y.
Theorem (Bayes Rule for Linear Gaussian Systems). Given a linear Gaussian system, as in Equation 3, the posterior
p(x|y) is given by the following:

p(x|y) = N(x|µx|y,Σx|y)
where

Σ−1
x|y = Σ−1

x +ATΣ−1
y A and µx|y = Σx|y

(
ATΣ−1

y (y − b) + Σ−1
x µx

)
.

Proof. The proof relies on algebraic manipulations and parameter recognition.See [2, Section 2.3.3]

6

Machine Learning II, lecture notes.

Inferring an unknown vector from noisy measurements

Suppose we have N vector-valued observations yi ∼ N(x,Σy) and a Gaussian prior x ∼ N(µ0,Σ0). Setting A = I ,
b = 0, and defining ȳ as the effective observation with precision NΣ−1

y , we get:

p(x|y1, . . . , yN) = N(x|µN ,ΣN),

where {
Σ−1

N = Σ−1
0 +NΣ−1

y ,

µN = ΣN

(
Σ−1

y (Nȳ) + Σ−1
0 µ0

)
.

This setup can model scenarios where x is an unknown true location (e.g., an object in 2D space), and yi are noisy
observations, like radar blips. As the number of observations increases, the estimate of x becomes more precise.

2.4 The Wishart Distribution

The Wishart distribution is a generalization of the Gamma distribution to positive definite matrices. It is often used to
model uncertainty in covariance matrices Σ or their inverses, Λ = Σ−1. The pdf of the Wishart distribution is defined
as:

Wi(Λ|S, ν) = 1

ZWi
|Λ|(ν−D−1)/2 exp

(
−1

2
tr(ΛS−1)

)
where ν is the "degrees of freedom" and S is the "scale matrix". ZWi is the normalization constant. The mean and mode
of the Wishart distribution Wi(S, ν) are:

mean = νS, mode = (ν −D − 1)S

The mode exists if ν > D + 1. For D = 1, the Wishart distribution reduces to the Gamma distribution:

Wi(λ|s−1, ν) = Ga(λ|ν/2, 2s)

Inverse Wishart Distribution

The inverse Wishart distribution (IW) is the multidimensional generalization of the inverse Gamma distribution. The
pdf of the inverse Wishart distribution is defined for ν > D − 1 and S ≻ 0 as:

IW(Σ|S, ν) = 1

ZIW
|Σ|−(ν+D+1)/2 exp

(
−1

2
tr(S−1Σ−1)

)
,

where ZIW is the normalization constant.

The mean and mode of the inverse Wishart distribution are:

mean =
S−1

ν −D − 1
, mode =

S−1

ν +D + 1

Remark. Wishart distribution and the Gaussian are connected the following way: if xi ∼ N(0,Σ), then the scatter
matrix S =

∑N
i=1 xix

T
i has a Wishart distribution, S ∼ Wi(Σ, N), with E[S] = NΣ.

Similarly, if Σ−1 ∼ Wi(S, ν), then Σ ∼ IW(S−1, ν +D + 1).

2.5 Inferring the Parameters of an MVN

So far, we have discussed inference in a Gaussian assuming known parameters θ = (µ,Σ). Now we consider how
to infer these parameters. Assuming fully observed data xi ∼ N(µ,Σ) for i = 1, . . . , N , we derive the posterior
distributions for µ and Σ.

7

Machine Learning II, lecture notes.

Posterior Distribution of µ

The likelihood for µ is:

p(D|µ) = N

(
x̄|µ, 1

N
Σ

)
Using a conjugate Gaussian prior p(µ) = N(µ|m0, V0), we get the posterior:

p(µ|D,Σ) = N(µ|mN , VN)

where

V −1
N = V −1

0 +NΣ−1, mN = VN
(
Σ−1Nx̄+ V −1

0 m0

)
With an uninformative prior (V0 = ∞I), we have p(µ|D,Σ) = N(x̄, 1

NΣ), so the posterior mean equals the MLE, and
the posterior variance decreases as 1/N .

Posterior Distribution of Σ

For Σ, the likelihood is:

p(D|µ,Σ) ∝ |Σ|−N/2 exp

(
−1

2
tr(SµΣ

−1)

)
where Sµ =

∑N
i=1(xi − µ)(xi − µ)T . Using an inverse Wishart prior IW(Σ|S−1

0 , ν0), the posterior is also inverse
Wishart:

p(Σ|D,µ) = IW(Σ|SN , νN)

where

νN = ν0 +N, SN = S0 + Sµ

Thus, the posterior "strength" νN is the sum of the prior strength ν0 and the sample size N , and the posterior scatter
matrix SN combines the prior and data scatter matrices.

Posterior Distribution of µ and Σ

To compute p(µ,Σ|D), we start with the likelihood and then discuss the choice of prior.

Likelihood

The likelihood for N observations is:

p(D|µ,Σ) = (2π)−ND/2|Σ|−N/2 exp

(
−1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

This can be rewritten in terms of the sample mean x̄ and scatter matrix Sx =
∑N

i=1(xi − x̄)(xi − x̄)T :

p(D|µ,Σ) = (2π)−ND/2|Σ|−N/2 exp

(
−N

2
(µ− x̄)TΣ−1(µ− x̄)− N

2
tr(Σ−1Sx)

)
(4)

8

Machine Learning II, lecture notes.

Prior

To model p(µ,Σ), we use the Normal-Inverse-Wishart (NIW) distribution, which provides a fully conjugate prior:

p(µ,Σ) = N(µ|m0, V0) IW(Σ|S0, ν0)

This prior is not fully conjugate to the likelihood because µ and Σ are intertwined in the likelihood expression and thus
remain coupled in the posterior. This type of prior is sometimes called semi-conjugate or conditionally conjugate, as
the conditionals p(µ|Σ) and p(Σ|µ) are each conjugate individually. To achieve a fully conjugate prior, we need a form
where µ and Σ are explicitly dependent on each other. This can be done by using a joint distribution structured as:

p(µ,Σ) = p(µ|Σ)p(Σ)

Looking at the form of the likelihood equation 4, we see that a natural conjugate prior has the form of a Normal-inverse-
Wishart (NIW) distribution, defined as follows:

NIW(µ,Σ|m0, κ0, ν0, S0) = N(µ|m0, κ
−1
0 Σ)× IW(Σ|S0, ν0)

In this setup:

• m0 is the prior mean for µ,

• κ0 is the strength of belief in m0,

• S0 is proportional to the prior mean of Σ,

• ν0 controls the confidence in S0.

The NIW distribution ensures that both p(µ|Σ) and p(Σ|µ) remain conjugate, making it suitable for Bayesian inference
on µ and Σ jointly.

Posterior

The posterior distribution can be shown to follow a Normal-inverse-Wishart (NIW) distribution with updated parameters:



p(µ,Σ|D) = NIW(µ,Σ|mN , κN , νN , SN),

κN = κ0 +N,

mN = κ0m0+Nx̄
κN

,

νN = ν0 +N

SN = S0 + Sx + κ0m0m
T
0 − κNmNm

T
N .

where S =
∑N

i=1 xix
T
i is the uncentered sum-of-squares matrix.

This result is intuitive: the posterior mean mN is a weighted combination of the prior mean m0 and the sample mean x̄,
with total “strength” κ0 +N . The posterior scatter matrix SN combines the prior scatter S0, the empirical scatter Sx,
and an additional term reflecting the uncertainty in the mean, which introduces virtual scatter.

Posterior mode

The mode of the joint distribution is given by

argmax p(µ,Σ|D) =

(
mN ,

SN

νN +D + 2

)
.

If we set κ0 = 0, this reduces to:

argmax p(µ,Σ|D) =

(
x,

S0 + Sx

ν0 +N +D + 2

)
.

Posterior predictive

9

Machine Learning II, lecture notes.

The posterior predictive is given by

p(x|D) =
p(x,D)

p(D)
,

which can be evaluated in terms of a ratio of marginal likelihoods. This ratio has the form of a multivariate Student-T
distribution:

p(x|D) =

∫
N(x|µ,Σ)NIW(µ,Σ|mN , κN , νN , SN) dµ dΣ = T

(
x

∣∣∣∣mN ,
κN + 1

κN (νN −D + 1)
SN , νN −D + 1

)
.

The Student-T distribution has wider tails than a Gaussian, accounting for the uncertainty in Σ.

2.6 Posterior for scalar data

We now specialize the above results to the case where xi is 1-dimensional. These results are widely used in the statistics
literature. It is conventional not to use the Wishart distribution but instead to use the normal-inverse-chi-squared (NIX)
distribution, defined by

NIχ2(µ, σ2|m0, κ0, ν0, σ
2
0) ∝ N(µ|m0, σ

2/κ0)χ
−2(σ2|ν0, σ2

0)

=
1

σ2

(ν0+3)/2

exp

[
−ν0σ

2
0 + κ0(µ−m0)

2

2σ2

]
.

Along the µ axis, the distribution is shaped like a Gaussian, and along the σ2 axis, the distribution is shaped like a χ−2;
the contours of the joint density have a “squashed egg” appearance. The contours for µ are more peaked for small
values of σ2, which makes sense, since if the data has low variance, we can estimate its mean more reliably.

One can show that the posterior is given by

p(µ, σ2|D) = NIχ2(µ, σ2|mN , κN , νN , σ
2
N),

where 
mN = κ0m0+Nx̄

κ0+N ,

κN = κ0 +N,

νN = ν0 +N,

νNσ
2
N = ν0σ

2
0 +

∑
(xi − x)2 + κ0N

κ0+N (m0 − x)2.

3 Gaussian processes

In supervised learning, we observe inputs xi and outputs yi, assuming yi = f(xi) for some unknown function f ,
possibly with noise. The goal is to infer a distribution over functions, p(f |X, y), and use it to make predictions for new
inputs, by computing:

p(y∗|x∗, X, y) =
∫
p(y∗|f, x∗)p(f |X, y) df

Previously, we used parametric representations of f , inferring p(θ|D) instead of p(f |D). Here, we use Gaussian
processes (GPs), which define a prior over functions. Once data is observed, the GP prior converts into a posterior over
functions. A GP assumes that p(f(x1), . . . , f(xN)) is jointly Gaussian with mean µ(x) and covariance Σ(x), where
Σij = κ(xi, xj), and κ is a kernel function.

In regression, these computations can be done in closed form in O(N3) time. For classification, approximations like
the Gaussian approximation are needed, as the posterior is not exactly Gaussian.

3.1 Gaussian processes for regression

In Gaussian processes (GPs) for regression, we place a GP prior on the regression function f(x), written as:

f(x) ∼ GP(m(x), κ(x, x′))

10

Machine Learning II, lecture notes.

where m(x) is the mean function, defined as m(x) = E[f(x)], and κ(x, x′) is the covariance (or kernel) function,
defined as:

κ(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T]

The kernel κ must be positive definite. For a finite set of points, this GP prior results in a joint Gaussian distribution:

p(f |X) = N(f |µ,K)

where Kij = κ(xi, xj) and µ = (m(x1), . . . ,m(xN)). Commonly, m(x) = 0 is chosen, as the GP is sufficiently
flexible to model the mean.

3.2 Predictions using noise-free observations

In the case of noise-free observations, suppose we have a training set D = {(xi, fi), i = 1, . . . , N}, where fi = f(xi)
represents noise-free function values at xi. For a test set X∗ of size N∗ ×D, we want to predict the function outputs
f∗.

In this setting, if the GP is queried with a training point x, it should return f(x) without uncertainty, behaving as an
interpolator. This behavior only holds with noiseless observations.

The joint distribution over training outputs f and test outputs f∗ is:[
f
f∗

]
∼ N

([
µ
µ∗

]
,

[
K K∗
KT

∗ K∗∗

])
where K = κ(X,X) is N ×N , K∗ = κ(X,X∗) is N ×N∗, and K∗∗ = κ(X∗, X∗) is N∗ ×N∗.

Using Gaussian conditioning, the posterior distribution for f∗ is:

p(f∗|X∗, X, f) = N (f∗|µ∗,Σ∗),

where {
µ∗ = µ(X∗) +KT

∗ K
−1(f − µ(X)),

Σ∗ = K∗∗ −KT
∗ K

−1K∗

This provides the GP prediction for the test outputs, accounting for correlations with the training data.

3.3 Predictions using noisy observations

When we observe a noisy version of the function, y = f(x) + ϵ, with ϵ ∼ N (0, σ2
y), the model no longer interpolates

exactly but instead approximates the observed data. The covariance of the noisy observations yp and yq is:

cov[yp, yq] = κ(xp, xq) + σ2
yδpq

where δpq = 1 if p = q and 0 otherwise. Thus, we can write:

cov[y|X] = K + σ2
yIN ≡ Ky

The noise term adds a diagonal component to the covariance matrix, as the noise is independent for each observation.

The joint distribution of the observed noisy outputs y and the latent (noise-free) function outputs f∗ at test points is:

[
y
f∗

]
∼ N

(
0,

[
Ky K∗
KT

∗ K∗∗

])
where, for simplicity, we assume a zero mean. The posterior predictive distribution is then:

p(f∗|X∗, X, y) = N (f∗|µ∗,Σ∗),

11

Machine Learning II, lecture notes.

with {
µ∗ = KT

∗ K
−1
y y,

Σ∗ = K∗∗ −KT
∗ K

−1
y K∗.

This setup allows us to predict the underlying function f∗ while accounting for noise in the observations.

4 Gaussian mixture models

[1, Sections 11]

4.1 Latent Variable Models (LVMs)

Graphical models define high-dimensional joint probability distributions by modeling dependencies between variables
using graph edges. An alternative approach assumes that observed variables are correlated due to shared hidden causes,
represented by latent variables. Such models, known as latent variable models (LVMs), are more challenging to fit but
offer two key advantages:

• Parameter Efficiency: LVMs often use fewer parameters compared to direct correlation models.
• Data Compression: Latent variables act as a bottleneck, providing compressed representations of data,

fundamental to unsupervised learning.

By adjusting the likelihood p(xi|zi) and prior p(zi), LVMs can model diverse structures.

4.2 Mixture Models

A mixture model is the simplest type of latent variable model (LVM), where the latent variable zi ∈ {1, . . . ,K}
represents a discrete state. The prior p(zi) follows a categorical distribution, Cat(π), and the likelihood p(xi|zi = k) =
pk(xi) uses pk, the k-th base distribution for observations.

The overall model combines K base distributions into a weighted sum:

p(xi) =

K∑
k=1

πkpk(xi),

where the weights πk satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1, ensuring a convex combination.

4.3 Mixtures of Gaussians

The Gaussian Mixture Model (GMM) is the most widely used mixture model. Each base distribution in the mixture is
a multivariate Gaussian with mean µk and covariance matrix Σk. The model is expressed as:

p(x) =

K∑
k=1

πkN (x|µk,Σk),

where πk are the mixing weights.

4.4 Mixtures of Bernoulli distributions

In the Bernoulli Mixture Model (BMM) each component of the mixture is a Bernoulli distribution, making it suitable
for data where each feature is binary. The model is expressed as:

p(x) =

K∑
k=1

πkpk(x|θk) =

K∑
k=1

πk

D∏
i=1

θxi

ki (1− θki)
1−xi ,

where:

12

Machine Learning II, lecture notes.

• x = (x1, x2, . . . , xD) is a binary data vector with D dimensions.
• θk = (θk1, θk2, . . . , θkD) are the parameter vectors for the k-th Bernoulli distribution, where each θki

represents the probability that the i-th binary variable is 1.

4.5 The EM algorithm

Estimating Maximum Likelihood (ML) or Maximum A Posteriori (MAP) parameters is straightforward with complete
data but becomes challenging with missing data or latent variables. While gradient-based optimizers can minimize
the negative log-likelihood (NLL), they often require enforcing constraints (e.g., positive-definite covariance matrices,
normalized mixing weights), which can be cumbersome.

The Expectation-Maximization (EM) algorithm simplifies this process. EM is an iterative method that alternates
between:

• E-Step: Inferring missing values based on current parameters.
• M-Step: Optimizing parameters using the inferred data.

EM often provides closed-form updates and automatically enforces constraints, making it an effective tool for parameter
estimation in incomplete data scenarios.

4.5.1 Basic Idea

Let xi represent observed variables and zi the hidden or missing variables. The goal is to maximize the log-likelihood
of the observed data:

l(θ) =

N∑
i=1

log
∑
zi

p(xi, zi|θ).

Direct optimization is difficult because the logarithm cannot be pushed inside the summation. The EM algorithm
addresses this by introducing the complete data log-likelihood:
Definition (Complete data log-likelihood).

lc(θ) =

N∑
i=1

log p(xi, zi|θ),

The complete data log-likelihood becomes more manageable if zi were known, as it eliminates the need to marginalize
over zi. However, since zi is unobserved, the EM algorithm calculates the expected complete data log-likelihood, also
referred to as the auxiliary function Q.
Definition (Expected complete data log-likelihood).

Q(θ, θ(t−1)) = Ep(z|x,θ(t−1))[lc(θ)],

where θt−1 represents parameters from the previous iteration.
Remark. Estimating the Maximum A Posteriori (MAP) or Maximum Likelihood (ML) for latent variable models
(LVMs) is challenging due to the non-convex nature of the log-likelihood function. This complexity arises because
the logarithm cannot be moved inside the summation, complicating algebraic simplifications. While distributions in
the exponential family offer a concave complete-data log-likelihood (and hence a unique maximum), the presence of
missing data introduces a log-sum-exp term that makes the objective function non-convex. As a result, the optimization
problem has multiple local optima, requiring techniques like random restarts, careful initialization, or EM to handle the
non-convexity effectively. For more details check [1, Section 11.3.2].

The EM-algorithm alternates between:

1. E-Step: Compute Q(θ, θt−1), or the expected sufficient statistics (ESS), given the observed data and current
parameters.

2. M-Step: Maximize Q(θ, θt−1) with respect to θ:

θt = argmax
θ
Q(θ, θt−1).

13

Machine Learning II, lecture notes.

For MAP estimation, the M-step includes a prior p(θ), modifying the objective to:

θt = argmax
θ
Q(θ, θt−1) + log p(θ).

The E-step remains unchanged. This iterative process ensures efficient parameter updates, leveraging the complete
data structure for optimization. The EM algorithm guarantees that the log-likelihood of the observed data (or the log
posterior in the case of MAP estimation) either increases or remains constant at each iteration. This ensures a monotonic
improvement in the objective function throughout the optimization process.

4.5.2 EM for GMMs

For mixture models, the expected complete data log-likelihood simplifies as follows:

Q(θ, θ(t−1)) =
∑
i

E

[
log
∏
k

(πkp(xi|θk))I(zi=k)

]
=
∑
i

∑
k

E[I(zi = k)] log[πkp(xi|θk)]

=
∑
i

∑
k

p(zi = k|xi, θ(t−1)) log[πkp(xi|θk)]

=
∑
i

∑
k

rik log πk +
∑
i

∑
k

rik log p(xi|θk),

where the posterior probabilities rik = p(zi = k|xi, θ(t−1)) is called the responsibility that cluster k takes for data
point i.

E Step

The E step computes the responsibilities rik, which are defined as:

rik =
πkp(xi|θk)∑
k′ πk′p(xi|θk′)

These responsibilities quantify the probability that each data point i belongs to cluster k, given the current parameters
θ(t−1).

M Step

In the M step, we optimize Q with respect to πk and θk = (µk,Σk). For πk, we have:

πk =

∑
i rik
N

,

where rik is the responsibility that cluster k takes for data point i.

For µk, the mean of cluster k, we compute:

µk =

∑
i rikxi∑
i rik

.

For Σk, the covariance of cluster k, we compute:

Σk =

∑
i rik(xi − µk)(xi − µk)

T∑
i rik

=

∑
i rikxix

T
i∑

i rik
− µkµ

T
k .

These equations intuitively make sense:

14

Machine Learning II, lecture notes.

• The mean µk is the weighted average of all points assigned to cluster k.

• The covariance Σk is proportional to the weighted empirical scatter matrix of the points in cluster k.

After computing the new estimates, we update the parameters as θt = (πk, µk,Σk) for k = 1, . . . ,K, and proceed to
the next E step.

4.6 EM for Mixture of Bernoullis

To apply the EM algorithm, introduce latent variables Z = {zn}, where each zn indicates the component membership
of data point xn.

The complete-data log likelihood is expressed as:

ln p(X,Z|θ,π) =
N∑

n=1

K∑
k=1

znk

(
lnπk +

D∑
i=1

[xni ln θki + (1− xni) ln(1− θki)]

)
(5)

E-Step (Expectation)

Objective: Compute the posterior probabilities (responsibilities) γ(znk) that each component k is responsible for each
data point xn.

Calculation:

p(znk|xn,θ, π) = γ(znk) =
πk
∏D

i=1 θ
xni

ki (1− θki)
1−xni∑K

j=1 πj
∏D

i=1 θ
xni
ji (1− θji)1−xni

(6)

M-Step (Maximization)

Objective: Update the parameters θ and π to maximize the expected complete-data log likelihood computed in the
E-Step.

Update Mixing Coefficients (πk):

πk =
Nk

N
where Nk =

N∑
n=1

γ(znk) (7)

Update Probability Parameters (θki):

θki =

∑N
n=1 γ(znk)xni

Nk
(8)

This sets θki to the weighted average of the data points, with weights given by the responsibilities γ(znk).

4.7 Using Mixture Models for Clustering

Mixture models have two primary applications:

1. Black-Box Density Modeling
• Purpose: Serve as flexible density estimators p(xi).
• Uses: Data compression, outlier detection, and creating generative classifiers by modeling class-

conditional densities p(x | y = c) with mixture distributions.

2. Clustering
• Process:

(a) Model Fitting: Fit the mixture model to the data.

15

Machine Learning II, lecture notes.

(b) Responsibility Calculation: Compute the posterior probability

rik = p(zi = k | xi, θ)

which indicates the probability that data point i belongs to cluster k. This is done using Bayes’ rule:

rik =
p(zi = k | θ) p(xi | zi = k, θ)∑K

k′=1 p(zi = k′ | θ) p(xi | zi = k′, θ)

• Soft Clustering: Assigns probabilities to cluster memberships, reflecting uncertainty in assignments.
This approach is similar to generative classifiers, with the key difference being that mixture models do not
observe cluster assignments zi during training, whereas generative classifiers do observe class labels yi.

• Hard Clustering: When uncertainty is low (i.e., 1−maxk rik is small), a hard assignment can be made
using the Maximum A Posteriori (MAP) estimate:

z∗i = argmax
k

rik = argmax
k

(log p(xi | zi = k, θ) + log p(zi = k | θ))

4.8 EM Monotonically Increases the Observed Data Log-Likelihood

At iteration t, let θ(t) denote the current parameter estimates, and θ(t+1) the updated estimates after the EM step. The
EM algorithm satisfies the following inequality:

l(θ(t+1)) ≥ Q(θ(t+1), θ(t)) ≥ Q(θ(t), θ(t)) = l(θ(t)), (9)

where:

• Q(θ, θ(t)) is the Q-function, acting as a lower bound for l(θ).

• The first inequality holds because Q(θ, θ(t)) ≤ l(θ).

• The second inequality follows from the maximization step, where θ(t+1) maximizes Q(θ, θ(t)).

• The equality Q(θ(t), θ(t)) = l(θ(t)) is based on the definition of the Q-function.

For details of these inequalities see [1, Section 11.4.7.1].

Figure 1: Illustration of EM as a bound optimization algorithm.

Implications

• Convergence Guarantee: The observed data log-likelihood l(θ) increases monotonically with each EM
iteration, ensuring convergence to at least a local optimum.

• Error Detection: If l(θ) does not increase monotonically during implementation, it indicates potential errors
in the mathematical formulation or coding of the algorithm. For Maximum A Posteriori (MAP) estimation,
ensure that the log prior is included in the objective function.

16

Machine Learning II, lecture notes.

4.9 BIC

5 Principal component analysis (PCA)

[1, Section 12.2]

Definition (Matrix with Orthonormal Columns). Let Q ∈ Rm×n, where m ≥ n. The matrix Q is said to have
orthonormal columns if its columns are orthogonal unit vectors, which is equivalent to the condition:

Q⊤Q = In

Remark (Key Properties). • Each column of Q is a unit vector:

∥qi∥ = 1, for i = 1, 2, . . . , n,

where qi is the i-th column of Q.

• Distinct columns of Q are orthogonal:

q⊤
i qj = 0, for i ̸= j.

• Preservation of Norms: For any vector x ∈ Rn,

∥Qx∥ = ∥x∥.

• Linear Independence: The columns of Q form a linearly independent set.

The reconstruction error in PCA measures the discrepancy between the original data and its reconstruction from the
reduced-dimensional representation. It quantifies the information loss due to dimensionality reduction.

Definition (Reconstruction error). The reconstruction error J is defined as the squared Frobenius norm of the difference
between the mean-centered data X̃ and its projection onto the k-dimensional principal subspace spanned by W :

J(W,Z) = ∥X −XWW⊤∥2F =
1

N

n∑
i=1

∥xi −Wzi∥22

where xi ∈ Rp is the i-th row of X , ∥ · ∥F denotes the Frobenius norm, and ∥ · ∥2 denotes the Euclidean norm.

The synthesis view of classical PCA is summarized in the following theorem.

Theorem (Classical PCA). Suppose we want to find an orthogonal set of L linear basis vectors wj ∈ RD, and the
corresponding scores zi ∈ RL, such that we minimize the average reconstruction error

J(W,Z) =
1

N

N∑
i=1

∥xi −Wzi∥2,

where W is an orthonormal matrix containing the basis vectors wj , and Z is the matrix containing the scores zi.

Furthermore, the optimal solution is obtained by setting Ŵ = VL, where VL contains the L eigenvectors with the
largest eigenvalues of the empirical covariance matrix

Σ̂ =
1

N

N∑
i=1

xix
⊤
i .

(We assume the xi have zero mean for notational simplicity.) Additionally, the optimal low-dimensional encoding of the
data is given by

ẑi =W⊤xi,

which is an orthogonal projection of the data onto the column space spanned by the eigenvectors.

Proof. See [1, Section 12.2.2]

17

Machine Learning II, lecture notes.

Algorithm 1 Principal Component Analysis (PCA)
Require: Data matrix X ∈ Rn×p where n is the number of samples and p is the number of features.
Ensure: Principal components and projected data matrix Z.

1: Standardize the Data:
2: Compute the mean of each feature:

µj =
1

n

n∑
i=1

Xij , for j = 1, 2, . . . , p

3: Center the data by subtracting the mean:

X̃ij = Xij − µj , for i = 1, 2, . . . , n; j = 1, 2, . . . , p

4: Compute the Covariance Matrix:

C =
1

n− 1
X̃⊤X̃ ∈ Rp×p

5: Compute Eigenvalues and Eigenvectors:
6: Solve the eigenvalue problem:

Cvk = λkvk, for k = 1, 2, . . . , p

7: Collect eigenvalues λk and corresponding eigenvectors vk.
8: Sort Eigenvalues and Eigenvectors:
9: Sort the eigenvalues in decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λp

10: Rearrange the eigenvectors accordingly.
11: Select Top k Components:
12: Choose the top k eigenvectors to form the projection matrix:

W = [v1,v2, . . . ,vk] ∈ Rp×k

13: Project the Data onto the New Subspace:
14: Compute the projected data matrix:

Z = X̃W ∈ Rn×k

6 Markovian models

6.1 Markov models

A Markov chain assumes Xt captures all relevant information for predicting the future, making it a sufficient statistic.
For discrete time steps, the joint distribution can be written as follows:

P (X1, . . . , XT) = P (X1)

T∏
t=2

P (Xt | Xt−1).

If the transition function P (Xt | Xt−1) is time-invariant, the chain is called homogeneous, stationary, or time-invariant.
This parameter-tying assumption enables modeling an arbitrary number of variables with fixed parameters, forming a
stochastic process.

For discrete states, where Xt ∈ {1, . . . ,K}, the chain is a finite-state Markov chain.

When Xt is discrete, Xt ∈ {1, . . . ,K}, the conditional distribution P (Xt | Xt−1) can be represented as a K ×K
transition matrix A, where Aij = P (Xt = j | Xt−1 = i) denotes the probability of transitioning from state i to state j.
Each row of A sums to one,

∑
j Aij = 1, making it a stochastic matrix.

Theorem (Chapman-Kolmogorov Equations). Let P (n)
ij denote the probability of transitioning from state i to state j in

n steps in a Markov chain. Then, for any non-negative integers m and n, the following holds:

18

Machine Learning II, lecture notes.

P
(m+n)
ij =

∑
k

P
(m)
ik P

(n)
kj ,

where the summation is over all states k. This can be equivalently expressed in matrix form as:

A(m+n) = A(m)A(n),

where A(n) is the n-step transition matrix. Consequently, the n-step transition matrix satisfies:

A(n) = An.

Thus, the probabilities of transitions over multiple steps can be computed by raising the transition matrix to the
appropriate power.

6.2 Hidden Markov models

Definition (Hidden Markov Model (HMM)). A Hidden Markov Model (HMM) consists of:

1. A discrete-time, discrete-state Markov chain with hidden states zt ∈ {1, . . . ,K}.

2. An observation model P (xt | zt), where observations xt may be discrete or continuous.

The joint distribution of the hidden states z1:T and observations x1:T is:

P (z1:T , x1:T) = P (z1:T)P (x1:T | z1:T) = P (z1)

T∏
t=2

P (zt | zt−1)

T∏
t=1

P (xt | zt).

Observation Models:

• For discrete observations, the observation model is typically represented by an observation matrix B, where:
P (xt = l | zt = k, θ) = B(k, l).

• For continuous observations, the observation model is often a conditional Gaussian:
P (xt | zt = k, θ) = N (xt | µk,Σk).

HMMs generalize Gaussian Mixture Models (GMMs) by incorporating Markovian dynamics into the cluster member-
ship. For example, with K = 3 states emitting different Gaussians, clusters exhibit temporal dependencies, resulting in
sequences of observations within the same region followed by abrupt transitions to new clusters.

6.2.1 Inference in HMMs

1. Filtering: Compute the belief state P (zt | x1:t) online or recursively as data streams in. Filtering is named
for its ability to reduce noise by leveraging all evidence up to time t, rather than relying solely on the current
observation P (zt | xt). Sequential application of Bayes’ rule enables efficient computation of the filtered
belief state.

2. Smoothing: Compute P (zt | x1:T) offline, using all observations x1:T . By conditioning on both past and
future evidence, smoothing significantly reduces uncertainty.

6.2.2 The forwards algorithm

Definition (Recursive Computation of Filtered Marginals in HMMs). The filtered marginals P (zt | x1:t) in a Hidden
Markov Model (HMM) can be computed recursively using the predict-update cycle, which consists of the following
steps:

1. Prediction Step: Compute the one-step-ahead predictive density, which serves as the prior for time t:

P (zt = j | x1:t−1) =
∑
i

P (zt = j | zt−1 = i)P (zt−1 = i | x1:t−1),

where P (zt = j | zt−1 = i) is the transition probability.

19

Machine Learning II, lecture notes.

2. Update Step: Absorb the observed data at time t using Bayes’ rule:
P (zt = j | x1:t) ∝ P (xt | zt = j)P (zt = j | x1:t−1),

where the normalization constant is given by:

Zt =
∑
j

P (zt = j | x1:t−1)P (xt | zt = j).

The filtered belief state at time t, P (zt | x1:t), is often denoted as αt and can be expressed in matrix-vector notation:

αt ∝ ψt ⊙ (ΨTαt−1),

where:

• ψt(j) = P (xt | zt = j) represents the local evidence at time t.

• Ψ(i, j) = P (zt = j | zt−1 = i) is the transition matrix.

• ⊙ denotes the Hadamard product (elementwise multiplication).

This process, known as the forwards algorithm, computes the filtered belief state αt at each time step t.

6.2.3 The forwards-backwards algorithm

Theorem (Forwards-Backwards Algorithm for Smoothed Marginals). To compute the smoothed marginals P (zt =
j | x1:T) in a Hidden Markov Model (HMM) using offline inference, we decompose the chain into past and future
components conditioned on zt:

P (zt = j | x1:T) ∝ P (zt = j | x1:t)P (xt+1:T | zt = j).

Define the following terms:

• αt(j) = P (zt = j | x1:t): the filtered belief state, computed recursively using the forwards algorithm.

• βt(j) = P (xt+1:T | zt = j): the conditional likelihood of future evidence, computed recursively in a
backwards fashion.

• γt(j) = P (zt = j | x1:T): the smoothed posterior marginal, given by:
γt(j) ∝ αt(j)βt(j).

Backwards Recursion: The β terms are computed recursively as:

βt−1(i) =
∑
j

Ψ(i, j)ψt(j)βt(j),

where:

• Ψ(i, j) = P (zt = j | zt−1 = i) is the transition matrix.

• ψt(j) = P (xt | zt = j) is the local evidence.

• ⊙ denotes the Hadamard product (elementwise multiplication).

In matrix-vector form:
βt−1 = Ψ(ψt ⊙ βt).

The base case is:
βT (i) = 1,

corresponding to the likelihood of a non-event beyond the final observation.

Forwards-Backwards Algorithm: The smoothed posterior marginal is computed by combining αt and βt at each time
step:

γt(j) ∝ αt(j)βt(j).

This algorithm involves passing messages from left-to-right (for αt) and right-to-left (for βt), combining them at each
node. It generalizes to belief propagation in more complex models.

20

Machine Learning II, lecture notes.

6.2.4 The Viterbi algorithm

Definition (Viterbi Algorithm). The Viterbi algorithm computes the most probable sequence of states z∗1:T in a
chain-structured graphical model, given the observations x1:T . Formally, it solves the optimization problem:

z∗1:T = argmax
z1:T

P (z1:T | x1:T).

6.3 Learning for HMMs

To estimate the parameters θ = (π,A,B) of a Hidden Markov Model (HMM), where:

• π(i) = P (z1 = i): the initial state distribution,

• A(i, j) = P (zt = j | zt−1 = i): the transition matrix,

• B: parameters of the class-conditional densities P (xt | zt = j),

we consider two scenarios:

1. Observed States: When z1:T is observed in the training set, parameter estimation is straightforward using
maximum likelihood estimation.

2. Hidden States: When z1:T is hidden, estimation becomes more challenging and requires techniques like the
Expectation-Maximization (EM) algorithm.

6.3.1 EM for HMMs (the Baum-Welch algorithm)

When the hidden states zt are unobserved, parameter estimation for Hidden Markov Models (HMMs) is analogous to
fitting a mixture model. The most common approach for this task is the Expectation-Maximization (EM) algorithm,
which finds the Maximum Likelihood Estimate (MLE) or Maximum A Posteriori (MAP) parameters. When applied to
HMMs, the EM algorithm is referred to as the Baum-Welch algorithm. The process is outlined below.

6.4 E Step

The expected complete data log likelihood is given by:

Q(θ, θold) = E

 K∑
k=1

Nk1 log πk +

K∑
j=1

K∑
k=1

Njk logAjk +

N∑
i=1

Ti∑
t=1

K∑
k=1

p(zt = k | xi, θold) log p(xi,t | ϕk)

 .
where the expected counts are given by:

E[Njk] =

N∑
i=1

Ti∑
t=2

p(zi,t−1 = j, zi,t = k | xi, θold),

E[Nk1] =

N∑
i=1

p(zi1 = k | xi, θold).

These expected sufficient statistics can be computed by running the forwards-backwards algorithm on each sequence.
In particular, this algorithm computes the following smoothed node and edge marginals:

γi,t(j) = p(zt = j | xi,1:Ti
, θ),

ξi,t(j, k) = p(zt−1 = j, zt = k | xi,1:Ti
, θ).

21

Machine Learning II, lecture notes.

6.5 M Step

Using the expected sufficient statistics from the E step, the M step updates the parameters:

1. Transition Matrix A:
Âjk =

E[Njk]∑
k′ E[Njk′]

,

where E[Njk] is the expected number of transitions from j to k.
2. Initial State Distribution π:

π̂k =
E[Nk1]∑
k′ E[Nk′1]

.

3. Observation Model:
• Multinoulli Observations:

B̂jl =

∑N
i=1

∑Ti

t=1 γi,t(j)I(xi,t = l)∑N
i=1

∑Ti

t=1 γi,t(j)
,

where I(xi,t = l) is an indicator function for the observation l.
• Gaussian Observations: Compute the expected sufficient statistics:

E[xk] =
N∑
i=1

Ti∑
t=1

γi,t(k)xi,t,

E[xx⊤]k =

N∑
i=1

Ti∑
t=1

γi,t(k)xi,tx
⊤
i,t,

and update the parameters:

µ̂k =
E[xk]
E[Nk]

,

Σ̂k =
E[xx⊤]k
E[Nk]

− µ̂kµ̂
⊤
k .

References

[1] KP Murphy. Machine Learning–A probabilistic Perspective. The MIT Press, 2012.
[2] Christopher M Bishop. Pattern recognition and machine learning. Springer google schola, 2:1122–1128, 2006.
[3] Ryan Martin. Stat 511–lecture notes ii exponential families, sufficiency & information. 2014.
[4] Christopher M Bishop and Hugh Bishop. Deep learning: Foundations and concepts. Springer Nature, 2023.
[5] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer

Science & Business Media, 2013.

22

	Probabilistic models for discrete data
	Likelihood and Prior
	Binary data - The Beta-Binomial Model
	Dirichlet distribution
	Categorical data

	Probabilistic models for continuous Data
	Gaussian pdf
	Jointly Gaussian Distributions
	Linear Gaussian systems
	The Wishart Distribution
	Inferring the Parameters of an MVN
	Posterior for scalar data

	Gaussian processes
	Gaussian processes for regression
	Predictions using noise-free observations
	Predictions using noisy observations

	Gaussian mixture models
	Latent Variable Models (LVMs)
	Mixture Models
	Mixtures of Gaussians
	Mixtures of Bernoulli distributions
	The EM algorithm
	Basic Idea
	EM for GMMs

	EM for Mixture of Bernoullis
	Using Mixture Models for Clustering
	EM Monotonically Increases the Observed Data Log-Likelihood
	BIC

	Principal component analysis (PCA)
	Markovian models
	Markov models
	Hidden Markov models
	Inference in HMMs
	The forwards algorithm
	The forwards-backwards algorithm
	The Viterbi algorithm

	Learning for HMMs
	EM for HMMs (the Baum-Welch algorithm)

	E Step
	M Step

