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Conjugate Gradient Method I

Suppose we have some quadratic function:

f (x) = 1
2xT Ax − bT x + c

for x ∈ Rn with A ∈ Rn×n and b, c ∈ Rn.
The gradient of f is: ∇f (x) = Ax − b. Minimizing the previous convex
problem is equivalent to solve Ax = b.
−∇f vector pointing the direction of steepest descent. Initial guess x0,
compute −∇f (x0), and move in that direction by a step size α.
Find the best α, this α brings us to the minimum of f constrainted to move
in the direction d0 = −∇f (x0).
Computing α is equivalent to minimizing the function g(α) = f (x0 + αd0).
Minimum of this function occurs when g ′(α) = 0. So we get that α is:

α = −dT
i (Axxi + b)

dT
i Adi
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Conjugate Gradient Method II

Second point in our iterative algorithm: x1 = x0 − α∇f (x0).
Find a new direction d1 to move in that is conjugate (w.r. A) to d0. So
d1 = −∇f (x1) + β0d0. We can derive β0 from conjugacy, dT

1 Ad0 = 0.

β0 =
∇f (x1)

T Ad0

dT
0 Ad0

Iterating this will keep giving us conjugate directions.
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Conjugate Gradient Method

Algorithm 1 Conjugate Gradient Method
Require: Let i = 0 and xi = x0 be our initial guess;

1: Compute di = d0 = ∇f (x0);
2: while Stoping test not satisfied do
3: Compute:

αi = −
dT

i (Axxi + b)
dT

i Adi
;

4: Update xi+1 = xi + αidi ;
5: Update direction di+1 = −∇f (xi+1) + βidi where:

bi =
∇f (xi+1)

T Adi

dT
i Adi

;

6: end while
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Preconditioned conjugate gradient method

Convergence analysis shows that convergence speed is fast when the
condition number of A is close to 1.
Acceleration of convergence rate by replacing the system Ax = b by the
preconditioned system:

M−1Ax = M−1b.

The symmetric positive definite matrix M must be chosen s.t. the system
Mz = r is solved with less computational work than the original one. M−1A
has a more ’favourable’ conditional number than A.
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Hessian-Free Newton Method

The general idea behind the algorithm is as follows:

Algorithm 2 Hessian-Free Newton Method
1: Let i = 0 and xi = x0 be our initial guess;
2: while Stoping test not satisfied do
3: At xn compute ∇f (xn) and H(f )(xn) and consider taylor expansion of f :

f (x +∆x) ≈ f (x) +∇f (x)T∆x +∆xT H(f )∆x .

4: Compute xn+1 with C.G. for quadratic functions on the Taylor expansion.
5: end while
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The quasi-Newton Preconditioner I

We wish to accelerate the C.G. iteration used in Hessian-free Newton
methods for nonlinear optimization. We want to solve the following problem:

Akx = bk , k = 1, ..., t,

where Ak is the Hessian of the objective function at the current iterate. Ak
vary slowly, and bk are arbitrary.
Also interested in solving finite element problems, so a sequence of linear
systems:

Ax = bi , i = 1, ..., t.

Both cases the coefficient matrices are symmetric and positive define.
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The quasi-Newton Preconditioner II

We deal with the large scale unconstrained optimization problem:

min f (x)

where f is a C2 of n variables.
Among the iterative methods for large scale unconstrained optimization,
when the Hessian matrix is possibly dense, limited memory quasi-Newton
methods are often the methods of choice.
They generate a sequence xk , according to the following scheme ([NW99]):

xk+1 = xk + αpk , k = 0, ...

with pk = −Hk∇f (x), where Hk is an approximation of the inverse of the
Hessian matrix and αk is a steplength.
Instead of computing Hk at each iteration k, these methods update Hk in a
simple manner, in order to obtain the new approximation Hk+1 to be used in
the next iteration.
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The quasi-Newton Preconditioner III

Moreover, instead of storing full dense n× n approximations, they only save a
few vectors of length n, which allow to represent the approximations
implicitly.
L-BFGS method is usually considered very efficient. Well suited for large scale
problems because the amount of storage is limited and controlled by the user.
This method is based on the construction of the approximation of the inverse
of the Hessian matrix, by exploiting curvature information gained only from
the most recent iterations.
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Automatic Preconditioning by limited
Memory Quasi-Newton Updating

Algorithm 3 Automatic Preconditioning limited Memory Quasi-Newton Updating
1: Solve {x1}, {r1} ← A1x = b1 with unpreconditioned CG-method;
2: for i = 2, ..., k do
3: Compute/store: si = xi+1 − xi , yi = ri+1 − ri , i = l1, ..., lm;
4: Define BFGS matrix Hk using {si}, {yi}; (quasi-Newton preconditioner)
5: {xi}, {ri} ← Use Hk preconditioned CG-method to solve Aix = bi ;
6: end for

Observation:
The parameter m determines the amount of memory in the preconditioner.
Two strategies to select the m vectors: 1. Select the last m vector generated
during C.G. iteration. 2. Take a uniform sample of them.
We don’t need to compute the Hessian, we need to compute H(m)v , for any
vector v . Can be done by finite diferences (approximation).
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Results

Test the preconditioned-method in non linear optimization problems and in
linear systems arising in finite element models.
Non linear optimization problems, there is a substantial reduction in the
number of C.G. iterations, when m = 8. For beyond m = 10 most results are
indentical to m = 8.
For tight tolerance, the benefit can be modest. But for relaxed tolerance the
saving number of C.G iterations are important.
With Finite element Matrices, there is also a reduction in the number of C.G.
iterations. No reduction of CPU time because marices are very sparce.
Comparing sampling strategies: In general a uniform sampling strategy
perform better than saving the last m pairs.
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